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Background

Core problem:

Identification of a nonlinear and unstable system operating in

closed-loop. Interested in methods that:

•use direct identifiaction because they can easily be used on different

applications.

•have no or few tuning parameters in order to get user-independent

results in industry.

• can handle non-white process noise because this can appear in the

applications.

Gripen

Application:

Modern fighter aircraft are

challenging from a system

identification perspective

since they work under con-

ditions where the physical

properties changes from

linear to nonlinear, from

unstable to stable and al-

ways operate under closed-loop conditions. The measurement noise is

concidered to be white, but the process noise used in simulations is

based on the Dryden atmospheric model.

A Gripen model

A simplified model of the pitch dynamics:

x(k + 1) = a(x(k)) + Bu(k) + w(k)

y(k) = x(k) + e(k)

where x(k) =
(
α(k) q(k)

)T
, u(k) =

(
δe(k) δc(k)

)T
and

a(x(k)) =

(
Zαα(k) + Zqq(k)

f (α(k)) + Mqq(k)

)
, B =

(
Zδe Zδc
Mδe Mδc

)
Here, f (α(k)) is a piece-wise affine function and Z = −N.

Methods

Five approaches have been investigated:

•Three of these are based on the Prediction-Error-Method (PEM)

x̂k+1(θ) = f (x̂k(θ), uk; θ) + Kk(θ)εk(θ),

ŷk(θ) = Cx̂k(θ),

εk(θ) = yk − ŷk(θ).

(1)

VN(θ, ZN) =
1

N

N∑
k=1

1

2
εk(θ)Tεk(θ), (2)

where ZN represents the N input-output measurements. An uncon-

strained optimization problem has to be solved to estimate θ

minimize
θ

VN(θ, ZN). (3)

The three approaces are different in the way they calculate the observer

gain Kk(θ).

- Parameterized Observer (PO), (Kk(θ) part of the parameter vector)

- Extended Kalman Filter (EKF)

- Unscented Kalman Filter (UKF)

•One State Estimation method:

Here the parameter vector θ is included in the state vector x.

ˆ̄xk+1 =

[
xk+1

θk+1

]
=

[
f (xk, uk; θk)

wθk

]
+ Kk(θ)εk(θ),

ŷk(θ) = C ˆ̄xk(θ),

εk(θ) = yk − ŷk(θ).

(4)

This is an Augmented State approach (AUG). The data have been

filtered once using EKF to calculate the gain Kk(θ).

•One State and Parameter Estimation method:

Here the state vector x is included in the parameter vector ϑ

ϑ = [xT0 . . . xTN−1 θ
T ]T . (5)

ŷk(θ) = Cx̂k(ϑ),

εk(ϑ) = yk − ŷk(ϑ).
(6)

VN(ϑ, ZN) =

N∑
k=1

1

2
εk(ϑ)Tεk(ϑ), (7)

A Constrained Levenberg-Marquardt (CLM) optimization problem has

been solved to estimate ϑ.
minimize

ϑ
VN(ϑ, ZN)

subject to F (ϑ) = 0.
(8)

Results with Simulation Data
Estimation data (left) and validation data (right):
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True α (deg)
True q (deg/s)
Est.   PO: 86.88%
Est. EKF: 86.90%
Est. UKF: 71.76%
Est. AUG: 93.43%
Est. CLM: 91.37%

Average nonlinearity estimate for noisy data (left) and for a 10% error

in the initial guess (right):
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Results with Flight Test Data
Nonlinearity estimate:
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8Conclusion: PO and EKF perform best in simulations, PO and CLM

perform best on real data.

8Future work: Better handling of process noise, choice of regularization

parameter.
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